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A comparison is made between the atomic co-ordinate corrections given in structure refinement by 
the least-squares and Fourier methods. For centrosymmetric structures the same corrections, when 
less than about 0.10 A., are given by both methods. A modified form of the Fourier method is 
suggested to allow for phase-angle refinement in non-centrosymmetric structures, which is equivalent 
to the least-squares method when the corrections are small. 

1. Introduction 

Qurashi (1949) has shown how the convergence of the 
method of steepest descents (Booth, 1947 a, b) may be 
improved, successive parameter corrections being 
identical with those given in successive refinements by 
the (linear) least-squares method (Hughes, 1941). By 
using Cochran's (1948a, b) relationship between the 
least-squares and Fourier methods Booth (1948) showed 
that  in a map of (Po-Pc), the difference of the observed 
and calculated electron densities, the directions of 
greatest ascent at the positions used to calculate the 
structure factors, F~, are the same as the directions 
in which the atoms would be moved by his method of 
steepest descents, and that  the gradients at these points 
are proportional to the magnitudes of the vector 
corrections given by his method. 

The purpose of the present paper is to extend these 
results by examining the connexion between the 
corrections given by the least-squares (or improved 
steepest-descents) and Fourier methods. A direct 
connexion will be established between the two methods 
for the final stages of refinement, though this takes 
slightly different forms for centrosymmetric and non- 
centrosymmetric structures, which we shall consider 
separately. A number of results and some notation will 
be taken from a paper (Cruickshank, 1949) on the 
accuracy of the least-squares method, which will be 
referred to as paper A. 

The object of the least-squares and steepest-descents 
methods is to find parameters for which some function 
of the observed and hypothetical structures is a 
minimum. We shall consider two closely related 

functions, R=Zwx(i Fo l_[ F~lF ' (1.1) 
3 

where ~ is a summation over the independent planes 
3 

observed and those planes dependent on them because 
of symmetry,  w~ is the weight given to each observation, 
and F o and F c are the observed and calculated 
structure factors; and 

¢=z 3 A([ Fol-IF~[)~, (1.2/ 

fr being the scattering factor of the rth atom. (A 
structure will have as many ¢ functions as it has 
different kinds of atoms.) 

We shall define the p density as 

1  o= ZwlfrlFolCOS(e- o), (1.3) 

_12 and P c - V  3 wlfr[ Fc ] cos (0-a~),  (1.4) 

where c% is the calculated phase angle and 

O=27rZ(h~x~/aj) ( j=1 ,2 ,3 ) .  
i 

As in A we assume that:  
(A 2) the shapes of the observed and calculated peaks 

of the electron (or the p) density near corresponding 
maxima are the same; and 

(A3) the peaks are resolved and the finite-series 
corrections small. 

In the form involving ¢ and the electron density p, 
Cochran's result is tha t  the co-ordinates of the r th 
atom which minimize ¢ (with the scattering factor of 
this atom) are the same as those given by the Fourier 
series for Po, when corrected for finite summation and 
peak overlapping by Pc. A similar relationship holds 
between R and the p density. 

2. Centrosymmetric structures 
2.1. Refinement corrections 

We shall take F as the signed structure factor, 
omitting the phase angle a. 

Let ~'c be calculated for a trial configuration of the 
structure, then in the (linear) least-squares method 
applied to ¢ there are v normal equations to determine 
the small corrections el, e~ . . . .  ,e~, ... ,ev to the co- 
ordinate parameters. These equations for different m are 
of the type 

~=1 ~ c~nen =ZI-(°Fc]3fr~0xJ(Fo-F0), (2"1/ 
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and (aFdaxm) is evaluated for the parameters of the trial 
configuration. 

Corresponding to A (3.6) we have approximately for 
a large summation (changing the notation slightly) 

4n ~ 
cr~'~J= a--~i t2~-'~3 (h~f~/s), (2.3) 

where t is the number of atomic co-ordinates determined 
by symmetry from this one parameter, and s is the 
multiplicity of a plane. Similarly, for the term in- 
volving the i and j co-ordinates of the rth atom, 

47r 2 
= - - t ~ Z  (hih~f~/s). (2.4) 

Cri, rj a ia j  3 

This will be small as compared with (2.3) for a 
summation throughout a spherical region of reciprocal 
space when the sides ai and a~ of the unit cell are 
orthogonal, but not necessarily otherwise. When the 
cross terms C~nn involve the parameters of different 
atoms, both cq~, r~ and cq~, ri will be small as compared 
with (2.3). Thus the corrections to the three parameters 
of one atom are determined to a good approximation 
in a large summation by only three equations, which, 
using the usual indices h, lc, 1 and co-ordinates x, y, z, 
may be written 

Chh ex ÷ Ch~e v + chzez = Ch, ] 

chl:e~ + cl~k ev + c1~ez = CI~, [ ! (2.5) 

Ch~ e x ÷ Ckz 6 v ~ c n 6 z ~ C~, j 

By symmetry C~ consists of t equal sums, giving as 
by A (2.2), 

C~= -2r r  tN h ( F o -  F~) sin0~. (2.7) 
c~ 3 

When ci~(i C j) is small the corrections are simply 

q = C~/c~, (2.s) 

which, with c~ defined by (2.2), is the steepest-descent 
correction given by Qurashi as applied to ¢. 

In the ordinary process of Fourier refinement the 
co-ordinate corrections to the positions of one atom in 
a trial configuration may be obtained by using 
differential syntheses, the equations (Booth, 1946b) 
determining the corrections being 

A ~  e~ + A~e~ + A~e~ + A~ =0,]  

~ 0 ,  Aa~:e~+ A ~ %  + A~e~ + A~ (2.9) i A~e~ + A ~ %  ÷ Aue, + At = O, 

27r ~, hF sin 0r, (2" 10) where Ai~ = - aV 3 

47T 2 
and A aT: = - -~-V ~ hlcF cos 0~. (2.11) 

To allow for the effect of finite summation and peak 
overlapping we can solve (2.9) separately for both the 
'observed' and ' calculated' structures, taking the 
differences as the corrections; or, assuming the ob- 

served and calculated Ah~, etc., to be approximately 
equal, we may write down a single set of equations 
taking Aa~ as in (2.11) and 

27r 
Ah= - - ~ - ~ h ( F o - F c )  sinO~, (2-12) 

but by (2.7) Aa=Ca/tV,  (2.13) 

and writing F o -  ~]fr cos Or, we have approximately, as 
r 

in A (3.11), 1 4n 9" t hkfr 

=--c~k/eV by (2.3). (2.14) 

From (2.13) and (2.14) we see that  the sets of equations 
(2.5) and (2.9) are the same; thus for centrosymmetric 
structures the same corrections (when small) are given 
by the least-squares method and by the related Fourier 
method with correction for finite summation and peak 
overlapping. 

Booth (1946b) has pointed out the very simple form 
which the equations (2.9) of the differential refinement 
method take when the peaks are spherically sym- 
metrical. This also applies to the equivalent equations 
(2.5) of the least-squares method where, if the peaks 
are spherically symmetrical, 

Ch~=Ckk=Cu, (2"15) 

the other coefficients being of the type 

chz = ch~ cos/?, (2.16) 

where/? is the angle between the x and z axes. Further, 
these coefficients are approximately independent of the 
trial co-ordinates and need be calculated but once. 

2.2. Conditions for equivalence 
We shall now make a more detailed examination of 

the conditions under which the least-squares (or im- 
proved steepest-descents) and related Fourier methods 
give the same results. 

The two methods will give different results, even 
when the assumptions (A2) and (A3) are true, if the 
corrections are large enough to cause substantial 
differences between the observed and calculated values 
of Ahk, etc., at the atomic positions of the hypothetical 
structure. This difference of results is lessened if the 
comparison is made between density maps (instead of 
differential syntheses) and least squares and is then due 
to the inaccuracy of the linear approximations in least 
squares (or in steepest descents to the assumption that  
¢ is a second degree surface). I f  we assume (Costain, 
1941; Booth, 1945, 1946a) that  the atomic peaks of the 
electron density maps may be represented by 

p(r) oc exp (-pr~),  

and take p- -5 ,  then for corrections of 0.14A. there is 
roughly a 10 % difference between the estimates by 
least squares and electron-density maps. For p density 
maps and their corresponding least-squares function R 
a 10 % difference corresponds to a correction of about 
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0.20A. (ff w l = l  ), these differences decreasing with p. 
Hence we may say roughly that the methods are 
equivalent for corrections less than 0" 10 A. 

2.3 General comparison 

In the Fourier refinement-method the signs of the 
Fo's in one stage are taken as i~hose of the ~'~'s calculated 
for the atomic positions reached at the end of the 
previous stage. By assuming continuity in the partial 
derivatives of I Fc I the least-squares and steepest- 
descents processes are also only able to change the 
signs of the F 's  in between refinement stages; for in 
fact the partial derivatives of I Fc ] are discontinuous 
when Fc changes sign. In the form in which we have 
written the least-squares equations without moduli in 
§ 2.1 the equivalent situation is that  the sign of Fo can 
only be changed at the end of a stage when it is found 
that  F e is of a different sign for the new co-ordinates. 
Thus both the least-squares and Fourier methods are 
on the same basis as regards phase-sign changes. 

We have already remarked that  the least-squares 
method suffers from the inadequacy of its linear 
approximations when the corrections are large, so that  
we conclude that  the least-squares method is only 
better than the Fourier method (taking the corrections 
as the differences of those given separately from Pc and 
p~) when the peaks are unresolved. 

This conclusion for centrosymmetric structures may 
be compared with those made for general structures by 
Booth (1948) at the end of his discussion on steepest 
descents and the Fourier method: 

' The above discussion makes it clear that  the normal 
Fourier refinement technique, in which the new atomic 
positions are taken to be those of the maxima of pc , is 
incorrect, and that  much better convergence would be 
obtained by taldng as new co-ordinates those of the 
maxima in the (Pc-Pc) space, although for the early 
stages of a determination this will still be much inferior 
to the true steepest-descent method.' 

First, agreeing that  it is incorrect to take the new 
atomic positions as the maxima of Pc (unless there is no 
peak overlapping in the Pc map), the new atomic 
positions in the final stages of refinement when the 
peaks are resolved will not be given by the maxima of 
(po-p~), but by taking as corrections the difference of 
those given separately from Pc and p~ (a procedure 
suggested by Booth (1945, 1946a) and which is what 
has been meant in this paper by the Fourier method). 

Secondly, ignoring the general conclusion reached 
above, at the level of approximation assumed in § 2-1, 
which treats the R or ¢ surfaces as of the second degree, 
the Fourier and least-squares (or improved steepest- 
descents) methods are equivalent. Booth has rightly 
concluded that  in general his steepest-descents method 
and the Fourier method lead to different results, but it 
is his steepest-descents method, resolution of the peaks 
being assumed, which, for centrosymmetric structures 
at any rate, is the less efficient. Booth's formulae find 

the line of steepest descent on the ¢ surface at the point 
which represents the trial configuration~ and estimate 
where ¢ is a minimum along that line; while Qurashi's 
steepest-descent method (to which the least-squares 
and, at this level of approximation, Fourier methods 
are equivalent) estimates directly where the • surface 
has a minimum, descending, as it were, along the 
geodesic curve of steepest descent. 

2.4. Electron and 19 densities 

Connexions similar to those established above for ¢ 
and the electron density hold between R and the 
p density. Precise comments on whether the electron 
or p density gives the better rate of convergence are 
difficult to make, but as the peaks of the p density are 
more spread out than those of the electron density, it 
would seem that  in the early stages of refinement, when 
resolution of the peaks is important, it would be better 
to use the electron density; while in the latter stages, 
when finM accuracy is important, it would be better to 
use the p density. As the electron density yields other 
useful information besides the atomic co-ordinates, 
perhaps the best scheme would be to carry the refine- 
ment as far as possible with the electron density, and 
then to carry out a final refinement with the p density 
or least squares to get the most accurate co-ordinates. 
Another reason for only using the p density at the last 
stage is the slight complication that  it involves different 
' weights' fr for different kinds of atoms. 

3. Non-centrosymmetr/c structures 

Much of § 2 is also applicable to non-centrosymmetric 
structures; we shall therefore consider only changed 
aspects. For simplicity we shall assume a structure with 
no elements of symmetry. 

3.1. Modified differential synthesis 

Booth (1946c) has shown how the equations (2.9) of 
the differential Fourier method may be modified to 
refine phase angles as well as co-ordinates. After 
calculating the corrections given by (2.9) he introduces 
into each of the three equations (2.9) an extra term 
AAa, AAk, AA~ respectively, where 

21r AA = ZhlFIcos(0 - )6 , etc., (3.1) 

e~ being the change in the phase angle given by the 
first corrections. The revised equations then give a 
second set of corrections, from which new phase-angle 
changes can be calculated to use in a third set of 
equations, etc. 

Assuming (A 2) and (A 3) and that  all the corrections 
are small, we shall show that this iterative process has 
as its limit corrections which are twice those given by 
the original equations (2.9). If, as in §2-1, we assume 
that the observed and calculated Ahk, etc. and also AAh 
are approximately equal, we may write down a single 
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set of equations for the difference of the 'observed'  and 
'calculated'  corrections, taking An as in (2.12). 

By Booth (1946c), 

1 
e~ = l Fo l ]~fr c°s (Or-~) (3"2) 

where eor-2n(he~rwl~ evr l ~ )  
a b - +  ' 

and ex.r, err , ezr are the co-ordinate corrections from (2.9). 
Following our previous approach for large summations, 
AA h is approximately given by 

2n 
AAh= ~ ~.~ hfr c o s  u (Or-a)eOr 

= -½(Aaaex~.+Aak%r+Aa~e~r) (3.3) 

= ½A a by (2.9). (3"4) 

Thus the equations for the second set of corrections 
! 

exr , etc., which are of the type 

A aa e'xr + Aak e~vr ÷ A a ze',,. + Aa + AA a = O, 
reduce to Ahae'~r+Ahke'v,÷Aaze'~,÷~Ah=O. (3.5) 

' 3 e t c .  Hence exr ---- ~exr , 
The new value of AAh is now 

AA'a= --½(Ahae'~r+Ahk%r+Ahyz~ ) (3"6) 

- -  a A 

leading to e~r =-~e~r, etc. 

Continuing this process we find tha t  the limit is a set 
of corrections which are twice those given originally 
by (2.9). 

This suggests tha t  when the co-ordinate corrections 
are small, the corrections given by the Fourier method 
for non-centrosymmetric structures should be doubled 
to allow for phase-angle correction. 

3.2. Least.squares refinement corrections 

Corresponding to (2.2) we have, if m and n refer to 
the x and y co-ordinates of the rth atom, 

= Z 4n2 hk f~ sin2 (0~.- a) 
3 ab ~ 
1 4n ~ 

- 2  ab ~ hk f ,  as in (2.4) 
3 

=-½VAnk, as in (2.14). (3.7) 

Corresponding to (2.7), 

=VAI~, by (2.12). (3.8) 

H we now compare (2.5) and (2.9), we see tha t  the 
corrections given by  the least-squares equations are 
twice those given by the ordinary differential Fourier 
method. Thus the same corrections are given by the 
least-squares method and the Fourier method when 
modified as in § 3.1 to allow for phase-angle refinement. 

3"3. Discussion 

As with centrosymmetrie structures the identi ty of 
correction by least-squares and the (now modified) 
Fourier methods holds only for small corrections. 

Though the least-squares equations now allow for 
phase-angle variation, further refinement will be 
necessary if the corrections exr are so large tha t  they 
apparently make values of [ -~c I at  the new co-ordinates 
negative, i.e. if 

al 01 IF~(initial) l÷~~e~,<O. (3.9) 

A further effect of large corrections will be to render the 
linear approximations of the method inadequate. On 
the other hand, the ordinary Fourier method is able to 
refine phase angles only in between stages, though when 
the corrections are small phase-angle changes may be 
allowed for by taking double the ordinary corrections, 
as in § 3" 1. This process, however, is not valid when the 
corrections are large. The Fourier method is also un- 
satisfactory when the peaks are unresolved. Thus 
though the least-squares and modified Fourier methods 
give the same corrections when these are small, it is 
difficult to compare them when the corrections are 
large. 

A possibility in practice, when using Fourier methods 
for non-centrosymmetric structures, would be to take 
the differences of the corrections given for Pc and p~ by 
the ordinary Fourier method as corrections until these 
are less than 0.10A., and thereafter to use double 
corrections. 
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